When it comes to buying and selling online, you should always be wary of fraud and questionable transactions. Certain platforms are more secure than others, but how does the king of online payments stack up? Is PayPal safe to use for buying and selling online?
Read also:What is PayPal? How do you use it?
Although it’s had trouble with fraud throughout its nearly two-decade history, PayPal is largely safe to use for normal transactions. That said, there are certain things you should know about PayPal’s security, and a few extra steps you can take to make sure your money and account remain safe.
Editor’s note: The information and tips in this article are primarily based on US PayPal accounts, but should hold true for accounts in other countries around the world.
Banks Safe & Lock Co. Fulfilling Your Security Needs For Over 50 Years. 7108 NW 72nd Avenue, Miami, FL 33166. Broward: 954-762-3565 Miami: 305-887-9811 Toll Free: 1-833-781-SAFE(7233).
The simple answer is yes, PayPal is safe, but within limits. Whether you’re sending money to friends or buying and selling products online, PayPal has a number of industry-standard security features and a bug bounty program to weed out vulnerabilities before it’s too late. PayPal also stores your data on encrypted servers, so the main risk to your account is from phishing and fraud rather than hacks and data breaches.
Read also:Common phone scams you should be aware of
While PayPal is generally safe, you still should not treat it as a replacement for a bank account. In the US, funds are not FDIC-insured, meaning that if PayPal goes out of business, your money goes with it. This shouldn’t be a major concern for normal users, but if you are worried, you should keep your PayPal balance low by transferring funds regularly to a normal bank account.
Additionally, although PayPal offers similar services to a credit card company or bank, the level of customer service does not match up. It can take weeks or months to recover lost funds in some cases. Also, PayPal isn’t necessarily under the same legal obligation as banks and other financial service companies.
With that out of the way, answering the question of exactly how safe PayPal is depends on what you’re using it for. Part of that is due to PayPal’s focus on buyer protection, and part of it is due to the nature of online payments.
For simple money transfers to friends, PayPal is one of the safest platforms out there. In fact, it may actually be safer than normal bank transfers. As long as you don’t make a mistake when entering the amount or email address, you can be absolutely positive that the recipient won’t be able to see your bank account details.
Read also: How to cancel a PayPal payment (before it’s too late)
Obviously there are some other security concerns that aren’t unique to PayPal. For example, using public Wi-Fi connections for financial transactions is never a good idea, as they may be vulnerable to interception. Another concern is scams, which attempt to trick you into sending money to an unknown account or click a link to gain access to your account.
As long as you’re wary of these things and use a bit of common sense, PayPal’s built-in security won’t let you down.
When it comes to using PayPal to buy goods and services, it’s one of the safest platforms out there. PayPal’s buyer protection program covers situations where a product is never received or isn’t as described, as well as fraudulent charges that were not authorized by the account holder.
These policies make PayPal’s buyer security similar to a credit card. However, there are a few limitations to what can be reimbursed in many countries. For example, purchases of cars, large machinery, and custom-made items are often exempt. You should review the full policy for your country, but the main takeaway is that PayPal isn’t ideal for very large purchases.
Even so, PayPal is a safer way to send money than Western Union or direct wire transfers. Potential scammers can’t glean any financial information from a PayPal transfer, making it a great choice for buyers looking for an extra level of privacy and security.
For those looking to use PayPal to sell goods and services, the story is more complicated. PayPal clearly favors buyers in online transactions, and this naturally comes at the expense of sellers.
PayPal does have a seller protection policy, but it’s significantly more restrictive than its buyer counterpart. While legitimate business owners who are willing to work with customers are unlikely to encounter significant problems, there are some situations where sellers may feel less than protected.
Read also:10 best money making apps for Android!
Sellers looking to use PayPal should only ship to verified addresses and require proof of delivery. This will prevent any fraudulent claims that goods were not delivered. Keeping a running record of communication and agreements with a customer will also keep PayPal on your side in any potential disputes.
When PayPal does receive an eligible complaint from a buyer, the funds in question may become locked and unavailable in the seller’s account. This doesn’t mean it’s immediately returned to the buyer, however, and if the dispute is decided in the seller’s favor, the funds once again become available.
Keeping on top of your PayPal account security should be a concern for both buyers and sellers, so we’ve put together a shortlist of tips to keep your money safe. Bear in mind that there is no way to eliminate the risk of data breaches for even the most diligent of users, but you should still try to mitigate that risk as much as possible.
One of the easiest ways to keep your PayPal account safe is to enable two-factor authentication. It’s disabled by default, but PayPal’s system is compatible with a variety of 2FA apps, including Google Authenticator, Authy, and others.
To turn it on, log into your account and navigate to the Settings page. Switch to the Security tab, then click 2-step verification. Follow the on-screen steps to set up a 2FA app or mobile number. Two-factor authentication can be a pain when logging in frequently, but it goes a long way toward securing your PayPal account.
Attaching a bank account or debit card is one of the easiest ways to add money to your PayPal account, but you should avoid it if possible. Attaching a credit card achieves the same result, but provides an extra level of security.
Most importantly, it eliminates the possibility of bad actors using PayPal’s auto-withdrawal feature to drain the money from your account. Plus, fraudulent charges can be disputed with the credit card company in addition to PayPal itself, providing an extra layer of fraud protection that you wouldn’t get with a bank account or debit card.
Whether you’re using a mobile device or a computer, make sure the device and software you’re using to access PayPal are up-to-date. Updates nearly always contain fixes for security holes that could leave your account vulnerable.
If you want to take your PayPal security even further, you can also use a dedicated device for PayPal transactions. Don’t use this device for anything else (no web surfing, no social media, no apps, etc.) and it should offer nearly bulletproof protection for your account.
One of the few situations where PayPal isn’t safe, even with a dedicated device, is while connected to public Wi-Fi connections. Even if you’re just checking your account balance and not transferring money, it may be possible for outsiders to decipher your password and gain access to your account.
If you absolutely must check your balance while away from home, turn off Wi-Fi and use mobile data instead.
Both buyers and sellers should be wary of unverified accounts, as they may be more prone to fraudulent charges and scams. Just about anyone can create a PayPal account in a few minutes, but verifying their identity and address opens them up to all kinds of legal troubles.
In the United States, verifying your account means linking an address (with a bank statement or utility/credit card bill) and Social Security number.
Two of the most common PayPal scams rely on unsuspecting users forgoing due diligence in email communications. Whenever you receive an email claiming to be from PayPal, be sure to double-check that it truly comes from PayPal, and use your browser or phone to navigate directly to your account instead of clicking on links contained in the email itself.
Another common PayPal email scam targeting sellers involves sending a fake shipping label via email. The buyer can then claim that they never received the item and request a refund. To avoid this, sellers should always ship directly through reputable postal services to verified addresses, and always get an online tracking number and proof of delivery. For high-value items, you might also want to consider requiring a signature upon delivery.
Our final tip to keep your PayPal account safe is one that even the most casual of users needs to keep in mind. No matter how much money you have in your PayPal account, you should regularly check it and make sure there aren’t any unexpected transactions.
The reason for this is that bad actors will frequently make a few small purchases to test out a newly acquired account. If they’re successful, they’ll move on to large purchases that quickly drain your bank account or put you in debt. Disputing these claims might get you your money back, but it will cost you countless hours, headaches, and stress. It’s best to nip it in the bud before things get out of hand.
Check out some of our other PayPal guides:
A bank vault is a secure space where money, valuables, records, and documents are stored. It is intended to protect their contents from theft, unauthorized use, fire, natural disasters, and other threats, much like a safe. Unlike safes, vaults are an integral part of the building within which they are built, using armored walls and a tightly fashioned door closed with a complex lock.
Historically, strongrooms were built in the basements of banks where the ceilings were vaulted, hence the name. Modern bank vaults typically contain many safe deposit boxes, as well as places for teller cash drawers and other valuable assets of the bank or its customers. They are also common in other buildings where valuables are kept such as post offices, grand hotels, rare book libraries and certain government ministries.
Vault technology developed in a type of arms race with bank robbers. As burglars came up with new ways to break into vaults, vault makers found new ways to foil them. Modern vaults may be armed with a wide array of alarms and anti-theft devices. Some 19th and early 20th century vaults were built so well that today they are difficult to destroy.[1] These older vaults were typically made with steel-reinforced concrete. The walls were usually at least 1 ft (0.3 m) thick, and the door itself was typically 3.5 ft (1.1 m) thick. Total weight ran into the hundreds of tons (see the Federal Reserve Bank of Cleveland). Today vaults are made with thinner, lighter materials that, while still secure, are easier to dismantle than their earlier counterparts.
The need for secure storage stretches far back in time. The earliest known locks were made by the Egyptians. Ancient Romans used a more sophisticated locking system, called warded locks. Warded locks had special notches and grooves that made picking them more difficult. Lock technology advanced independently in ancient India, Russia, and China, where the combination lock is thought to have originated. In the United States, most banks relied on small iron safes fitted with a key lock up until the middle of the nineteenth century. After the Gold Rush of 1849, unsuccessful prospectors turned to robbing banks. The prospectors would often break into the bank using a pickaxe and hammer. The safe was usually small enough that the thief could get it out a window, and take it to a secluded spot to break it open.
Banks demanded more protection and safe makers responded by designing larger, heavier safes. Safes with a key lock were still vulnerable through the key hole, and bank robbers soon learned to blast off the door by pouring explosives in this opening. In 1861, inventor Linus Yale Jr. introduced the modern combination lock. Bankers quickly adopted Yale's lock for their safes, but bank robbers came up with several ways to get past the new invention. It was possible to use force to punch the combination lock through the door. Other experienced burglars learned to drill holes into the lock case and use mirrors to view the slots in the combination wheels inside the mechanism. A more direct approach was to simply kidnap the bank manager and force him to reveal the combination.
After the inventions of the combination lock, James Sargent—an employee of Yale—developed the 'theft proof lock.' This was a combination lock that worked on a timer. The vault or safe door could only be opened after a set number of hours had passed, thus a kidnapped bank employee could not open the lock in the middle of the night even under force. Time locks became widespread at banks in the 1870s. This reduced the kidnappings, but set bank robbers to work again at prying or blasting open vaults. Thieves developed tools for forcing open a tiny crack between the vault door and frame. As the crack widened, the thieves levered the door open or poured in gunpowder and blasted it off. Vault makers responded with a series of stair-stepped grooves in the door frame so the door could not be levered open. But these grooves proved ideal for a new weapon: liquid nitroglycerin. Professional bank robbers learned to boil dynamite in a kettle of water and skim the nitroglycerin off the top. They could drip this volatile liquid into the door grooves and destroy the door. Vault makers subsequently redesigned their doors so they closed with a thick, smooth, tapered plug. The plug fit so tightly that there was no room for the nitroglycerin.
By the 1920s, most banks avoided using safes and instead turned to gigantic, heavy vaults with walls and doors several feet thick. These were meant to withstand not only robbers but also angry mobs and natural disasters. Despite the new security measures, these vaults were still vulnerable to yet another new invention, the cutting torch. Burning oxygen and acetylene gas at about 6,000 °F (3,300 °C), the torch could easily cut through steel. It was in use as early as 1907, but became widespread with World War I. Robbers used cutting torches in over 200 bank robberies in 1924 alone. Manufacturers learned to sandwich a copper alloy into vault doors. If heated, the high thermal conductivity of copper dissipates the heat to prevent melting or burning. After this design improvement, bank burglaries fell off and were far less common at the end of the 1920s than at the beginning of the decade.
Technology continues in the race with bank robbers, coming up with new devices such as heat sensors, motion detectors, and alarms. Bank robbers have in turn developed even more technological tools to find ways around these systems. Although the number of bank robberies has been cut dramatically, they are still attempted.
Materials used in vaults and vault doors have changed as well. The earlier vaults had steel doors, but because these could easily be cut by torches, different materials were tried. Massive cast iron doors had more resistance to acetylene torches than steel. The modern preferred vault door material is the same concrete as used in the vault wall panels. It is usually clad in steel for cosmetic reasons.
Bank vaults are built as custom orders. The vault is usually the first aspect of a new bank building to be designed and built. The manufacturing process begins with the design of the vault, and the rest of the bank is built around it. The vault manufacturer consults with the customer to determine factors such as the total vault size, desired shape, and location of the door. After the customer signs off on the design, the manufacturer configures the equipment to make the vault panels and door. The customer usually orders the vault to be delivered and installed. That is, the vault manufacturer not only makes the vault parts, but brings the parts to the construction site and puts them together.
Bank vaults are typically made with steel-reinforced concrete. This material was not substantially different from that used in construction work. It relied on its immense thickness for strength. An ordinary vault from the middle of the 20th century might have been 18 in (45.72 cm) thick and was quite heavy and difficult to remove or remodel around. Modern bank vaults are now typically made of modular concrete panels using a special proprietary blend of concrete and additives for extreme strength. The concrete has been engineered for maximum crush resistance. A panel of this material, though only 3 in (7.62 cm) thick, may be up to 10 times as strong as an 18 in-thick (45.72-cm) panel of regular formula concrete.
There are at least two public examples of vaults withstanding a nuclear blast. The most famous is the Teikoku Bank in Hiroshima whose two Mosler Safe Company vaults survived the atomic blast with all contents intact. The bank manager wrote a congratulatory note to Mosler.[2][3] A second is a vault at the Nevada National Security Site (formerly the Nevada Test Site) in which an above ground Mosler vault was one of many structures specifically constructed to be exposed to an atomic blast.[4][5]
The wall panels are molded first using a special reinforced concrete mix. In addition to the usual cement powder, stone, etc., additional materials such as metal shavings or abrasive materials may be added to resist drilling penetration of the slab. Unlike regular concrete used in construction, the concrete for bank vaults is so thick that it cannot be poured. The consistency of concrete is measured by its 'slump'. Vault concrete has zero slump. It also sets very quickly, curing in only six to 12 hours, instead of the three to four days needed for most concrete.[6][7]
The vault door is also molded of special concrete used to make the panels, but it can be made in several ways. The door mold differs from the panel molds because there is a hole for the lock and the door will be clad in stainless steel. Some manufacturers use the steel cladding as the mold and pour the concrete directly into it. Other manufacturers use a regular mold and screw the steel on after the panel is dry.
Round vault doors were popular in the early 20th century and are iconic images for a bank's high security. They fell out of favor due to manufacturing complexities, maintenance issues (door sag due to weight) and cost, but a few examples are still available.[8][9]
A day gate is a second door inside the main vault door frame used for limited vault protection while the main door is open. It is often made of open metal mesh or glass and is intended to keep a casual visitor out rather than to provide true security.[10]
A vault door, much like the smaller burglary safe door, is secured with numerous massive metal bolts (cylinders) extending from the door into the surrounding frame. Holding those bolts in place is some sort of lock. The lock is invariably mounted on the inside (behind) of the difficult to penetrate door and is usually very modest in size and strength, but very difficult to gain access to from the outside. There are many types of lock mechanisms in use:
Quality control for much of the world's vault industry is overseen by Underwriters Laboratories, Inc. (UL), in Northbrook, Illinois. Until 1991, the United States government also regulated the vault industry. The government set minimum standards for the thickness of vault walls, but advances in concrete technology made thickness an arbitrary measure of strength. Thin panels of new materials were far stronger than the thicker, poured concrete walls. Now the effectiveness of the vault is measured by how well it performs against a mock break-in. Manufacturers also do their own testing designing a new product to make sure it is likely to succeed in UL trials.[13] Key points include:
Rating | Time to Breach Vault |
---|---|
Class M | 15 minutes |
Class I | 30 minutes |
Class II | 60 minutes |
Class III | 120 minutes |
As with the US, Europe has agreed a series of test standards to assure a common view of penetrative resistance to forcible attack.[14] The testing regime is covered under the auspices of Euronorm 1143-1:2012 (also known as BS EN 1143-1: 2012),[15] which can be purchased from approved European standards agencies.[16][17]
Key points include:
Resistance Grade | Resistance Value to Breach Vault | Lock Quantity | Explosive Rating Possible | Core Drill Rating Possible |
---|---|---|---|---|
0 | 30 | One | No | No |
I | 50 | One | No | No |
II | 80 | One | Yes | No |
III | 120 | One | Yes | No |
IV | 180 | Two | Yes | No |
V | 270 | Two | Yes | No |
VI | 400 | Two | Yes | No |
VII | 600 | Two | Yes | No |
VIII | 825 | Two | Yes | Yes |
IX | 1050 | Two | Yes | Yes |
X | 1350 | Two | Yes | Yes |
XI | 2000 | Two or Three | Yes | Yes |
XII | 3000 | Two or Three | Yes | Yes |
XIII | 4500 | Two or Three | Yes | Yes |
The manufacturing process itself has no unusual waste or byproducts, but getting rid of old bank vaults can be a problem. Newer, modular bank vaults can be moved if a bank closes or relocates. They can also be enlarged if a bank needs to change. Older bank vaults are quite difficult to demolish. If an old bank building is to be renovated for another use, in most cases a specialty contractor has to be called in to demolish the vault. A vault's demolition requires massive wrecking equipment and may take months of work at a large expense. At least one company in the United States refurbishes old vault doors that are then resold.
In some cases, the new owner of a former bank building will opt to use the vault. There are cases where, for example, a bank building was renovated into a pub, which then used the vault as a secure storeroom for its liquor supply.[citation needed]
Bank vault technology changed rapidly in the 1980s and 1990s with the development of improved concrete material. Bank burglaries are also no longer the substantial problem they were in the late 19th century up through the 1930s, but vault makers continue to alter their products to counter new break-in methods.
An issue in the 21st century is the thermal lance. Burning iron rods in pure oxygen ignited by an oxyacetylene torch, it can produce temperatures of 6,600–8,000 °F (3,650–4,430 °C). The thermal lance user bores a series of small holes that can eventually be linked to form a gap. Vault manufacturers work closely with the banking industry and law enforcement in order to keep up with such advances in burglary.
Wikimedia Commons has media related to Bank vaults. |